Increasing the scope and precision of the steady-state photocarrier grating technique by measuring the photocurrents at several voltages

Author:

Kopprio LeonardoORCID,Longeaud Christophe

Abstract

Abstract The steady-state photocarrier grating (SSPG) experiment is a popular technique for extracting the minority carrier diffusion length of photoconductive thin films in coplanar configuration. The diffusion length is basically obtained from the measurement of the steady-state photocurrent produced by a low applied voltage while the material is illuminated by two monochromatic laser beams of different intensities that interfere between the electrical contacts of the sample. Despite its simplicity and popularity, it is well known that the technique can overestimate the minority carrier diffusion length in some samples. In this paper, we show that the precision of the technique can be substantially increased by performing the same experiment at different voltages. Additionally, we show how to estimate fundamental material parameters from the experiment, such as the density of states at the majority carrier quasi-Fermi energy and the ratio between the recombination states’ capture coefficient and mobility of majority carriers. First, we show that the procedures found in the literature for correcting the overestimation produced by the standard technique do not work properly due to an oversimplification in the modeling. Then, we use a numerical simulation of an unintentionally-doped hydrogenated-amorphous-silicon-like material to evaluate the precision of the new formulas and procedures presented. We clarify the conditions under which the standard SSPG technique produces large overestimations. In these cases, we show that the precision of the new procedure can be more than ten times higher. Finally, we use the standard and the new method to characterize a hydrogenated amorphous (a-Si:H) and a hydrogenated polymorphous (pm-Si:H) silicon sample at different temperatures. We observe that the overestimations produced by the standard technique increase with the ratio between the majority and minority carrier diffusion lengths and the ratio between the recombination states’ capture coefficient and mobility of majority carriers.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3