Low contact resistance and high breakdown voltage of AlGaN/GaN HEMT grown on silicon using both AlN/GaN superlattice and Al0.07Ga0.93N back barrier layer

Author:

Hieu Le TrungORCID,Rathaur Shivendra K,Lu Chee-How,Weng You-Chen,Lin Yuan,Lin Chun-Hsiung,Chen Quark Yungsung,Chang Edward Yi

Abstract

Abstract In this study, the growth of a high-quality AlGaN/GaN high electron mobility transistor (HEMT) heterostructure on silicon (Si) by metal–organic chemical vapor deposition was investigated by utilizing both the AlN/GaN superlattice (SL) and Al0.07Ga0.93N back barrier (BB) techniques. An atomic force microscope and high-resolution x-ray diffractometer confirm a low surface roughness of 0.26–0.34 nm and the formation of a high-quality AlN/GaN SL and GaN channel. The AlGaN/GaN heterostructures exhibit a high electron mobility of up to 1700 cm2 V−1∙s and a high carrier concentration density of (1.02–1.06 × 1013 cm−2) for both heterostructures. The AlGaN/GaN HEMT devices demonstrate a low specific contact resistivity (ρ c) of 2.7 × 10−6 Ω·cm2 and a low contact resistance (RC ) of 0.3 Ω·mm for the heterostructure with a BB layer. Furthermore, the DC characteristics demonstrate that incorporating Al0.07Ga0.93N BB in the heterostructure results in a 19.2% increase in lateral breakdown voltage (with a 10 µm spacing) and a 27.5% increase in vertical breakdown voltage (at 1 mA cm−2) compared to heterostructures without Al0.07Ga0.93N BB within the AlN/GaN SL structure. Moreover, an improvement of 10.6% in the maximum saturation current (I DS) and 15.2% in on-resistance (R ON) has been achieved for the device fabricated on an Al0.07Ga0.93N BB structure. The insertion loss of the buffer layer improves to −1.40 dB mm−1 at 40 GHz. Consequently, the proposed heterostructure investigated in this study demonstrates suitability for electronic device applications.

Funder

Ministry of Education

Co-creation Platform of the Industry Academia Innovation School, NYCU

National Science and Technology Council

Industry partners in Taiwan

National Development Fund

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3