Band alignment of TiO2/SiC and TiO2/Si heterojunction interface grown by atomic layer deposition

Author:

Zeng Yu-Xuan,Wang Xi-Rui,Zhang Jie,Huang Wei,Yang Lei,Ma Hong-PingORCID,Zhang Qing-Chun

Abstract

Abstract Silicon carbide (SiC) is regarded as a promising semiconductor owing to its wide band gap and high thermal conductivity. Meanwhile, it possesses issues such as interface properties, which may affect the performance of SiC substrate power devices (e.g. MOSFET), especially when compared with similarly structured silicon appliances. Given that the development of SiC semiconductor devices has a number of commonalities with conventional silicon-based semiconductors, titanium dioxide (TiO2), a material that has a great track record in Si-based semiconductor devices, has been chosen for investigation in this work. Although TiO2 is not capable of being a gate dielectric alone on the SiC substrate because of its relatively narrow band gap, it can be adopted into composite or multilayer gate dielectrics to reach satisfying characteristics. As such, the interfacial state and heterostructure between TiO2 and SiC remain worthy being researched. In the present study, the properties of atomic layer deposited (ALD) TiO2 films on silicon substrates were compared with those on 4H-SiC substrates via x-ray photoelectron spectroscopy, atomic force microscopy, and x-ray reflectometry. It is shown that the interface state between ALD TiO2 film and both types of substrates as-deposited have similar chemical conditions, whereby TiO2 layer barely react with substrates, containing great amount of oxygen vacancies. According to band alignment calculations, heterostructure of both samples are type-II heterojunctions with negatively shifted conduction band. Although the large bandwidth of 4H-SiC hinders the use of TiO2 as a gate dielectric in power devices, this structure has the potential for other semiconductor products.

Funder

Shanghai Science and Technology Development Foundation

Fudan University

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3