Investigation of 4,4′-bis[(N- carbazole) styryl] biphenyl (BSB4) for a pure blue fluorescent OLED with enhanced efficiency nearing the theoretical limit

Author:

Barah DhruvajyotiORCID,Sahoo SubhamoyORCID,Inaganti Naga Sai ManojORCID,Kesavan HaripriyaORCID,Bhattacharyya JayeetaORCID,Ray DebduttaORCID

Abstract

Abstract 4,4′-bis[(N-carbazole) styryl] biphenyl (BSB4 or BSBCz) is one of the widely studied organic fluorescent materials for blue organic electroluminescent devices in the recent times. In this work, BSB4 is used as a guest material to construct the host-guest matrix for the emissive layer (EML) of a pure blue fluorescent organic light-emitting diode (OLED). A pure blue emission suitable for display application with a Commission Internationale de l’Eclairage coordinate of (0.147,0.070) is achieved by the blue-shift of the emission spectrum of the host-guest matrix from that of the pristine guest (BSB4) molecules. The optimization of OLED structures is carried out by considering (a) charge balance in the EML for high exciton density, and (b) optical interference of generated light in the organic layers for increased light outcoupling. A thorough comparative study on the use of different combinations of widely used hole and electron transport layers to obtain charge balance in the EML of the OLED, thereby enhancing the external quantum efficiency (EQE) is shown. Optical interference effects in the fabricated OLEDs are analyzed by optical simulation of each device structure by transfer matrix method. With the optimized device structures, we are able to overcome the 2% EQE limit that has been reported so far for blue fluorescent OLEDs with BSB4 as light emitting material and achieve a maximum EQE of 4.08%, which is near to the theoretical limit of EQE for fluorescent OLEDs.

Funder

Ministry of Electronics and Information technology

Defence Research and Development Organization

Tata Sons

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3