Optical, conductive, and ferroelectric properties of the first layer of dip-coated BiFeO3 films from methoxyethanol and acetic acid-based chemical dissolvents

Author:

Diliegros-Godines Carolina JORCID,Flores-Ruiz Francisco JavierORCID

Abstract

Abstract The overall performance of the multilayer resulting in a sol-gel bismuth ferrite (BiFeO3) film will be primarily determined by the properties of the first layer, but this has yet to receive much attention, even though chemical and morphological defects of this layer can accumulate as the number of layers increases. Here, we perform an optical, conductive, and ferroelectric study of first layer (L 1) dip-coating sol-gel BiFeO3 films using two routes that vary only in the dissolvent; the first one is based on 2-methoxyethanol (MOE), and the second one on acetic acid (AA) with some MOE (AA-MOE). Tauc plots reveal a band gap of 2.43 eV and 2.75 eV for MOE (30 ± 5 nm thick) and AA-MOE (35 ± 5 nm thick) films, respectively. MOE films showed a dielectric function with features at ∼2.5 eV, ∼3.1 eV, and ∼3.9 eV, which were associated with charge-transfer transitions, but such features are absent in AA-MOE films. Advanced atomic force microscopy techniques were used to identify the fine features or defects of the BiFeO3 films: The conductive maps show that the charge transport pathways in both film routes are controlled by nanometer defects rather than grain or grain boundary defects. Current-voltage curves reveal high conductive pathway at a lower voltage for the MOE films than for AA-MOE films. The piezoelectric coefficient for MOE films was ∼20% higher than AA-MOE films. Both deposition methods yield ferroelectric films with an electromechanical strain controlled by the piezoelectric effect and minimal contribution from electrostriction. An optimization for the AA-MOE-based route in the withdrawal speed results in a significant reduction of morphological defects and a more than twofold increase in the piezoelectric coefficient. Our results broaden the understanding of optical and ferroelectric BiFeO3 films based on a chemical solution by dip-coating.

Funder

Consejo Nacional de Ciencia y Tecnología

Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3