Software Defect Fault Intelligent Location and Identification Method Based on Data Mining

Author:

Wang Fang

Abstract

Abstract With the advancement of the times, computer technology is also constantly improving, and people’s requirements for software functions are also constantly improving, and as software functions become more and more complex, developers are technically limited and teamwork is not tacitly coordinated. And so on, so in the software development process, some errors and problems will inevitably lead to software defects. The purpose of this paper is to study the intelligent location and identification methods of software defects based on data mining. This article first studies the domestic and foreign software defect fault intelligent location technology, analyzes the shortcomings of traditional software defect detection and fault detection, then introduces data mining technology in detail, and finally conducts in-depth research on software defect prediction technology. Through in-depth research on several technologies, it reduces the accidents of software equipment and delays its service life. According to the experiments in this article, the software defect location proposed in this article uses two methods to compare. The first error set is used as a unit to measure the subsequent error set software error location cost. The first error set 1F contains 19 A manually injected error program, and the average positioning cost obtained is 3.75%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Performance analysis of fault signal recognition in the communication field based on data mining algorithms[J];Jialin;Electronic Measurement Technology,2020

2. Research and application of software defect prediction based on Weka[J];Jiangfeng;Henan Science and Technology,2020

3. Intelligent Location and Analysis of Power Grid Fault Trip Based on Multi-source Data[J];Xiaqin;Energy Procedia,2017

4. Intelligent Fault Identification Based on Multisource Domain Generalization Towards Actual Diagnosis Scenario[J];Zheng;IEEE Transactions on Industrial Electronics,2020

5. Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals[J];Zhang;Journal of Intelligent Manufacturing,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terminal Software Defect Detection Method Based on Association Rules;2022 International Conference on Knowledge Engineering and Communication Systems (ICKES);2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3