Cloud, wireless technology, internet of things: the next generation of building automation systems?

Author:

Bode Gerrit,Baranski Marc,Schraven Markus,Kümpel Alexander,Storek Thomas,Nürenberg Markus,Müller Dirk,Rothe Andreas,Ziegeldorf Jan Henrik,Fütterer Johannes,Scheuffele Bernd

Abstract

Abstract Building automation and control systems (BAS) have become a common part of non-residential buildings in the past decades. However, many automation systems rely on severely outdated technology that render it challenging, if not impossible, to implement recently developed, advanced building control approaches. By contrast, recent developments in cloud computing and wireless technology could support solutions to these challenges. However, many stakeholders require a suitable methodology to determine the potentials and the requirements of future, possibly next generation BAS. In this paper, we thus present and apply a method to answer the open questions and define minimum requirements. For that end, we investigate available communication technologies, protocols, and interfaces. Moreover, we present a simple test bench layout that could serve as a blueprint for future, more comprehensive test benches. It is a model a ventilation circuit consisting of a CO2 sensor for the supply air and an electronic damper. We turned these conventional components with analogue interfaces into IoT devices using a previously developed WiFi gateway. An exemplary test is the control of the CO2 concentration using a feedback controller implemented on an external machine. We aim to extend our initial prototype to a real-life building demonstration for dynamically scalable automation systems using wireless communication and develop our set-up into a platform enabling arbitrarily complex automation strategies and artificial intelligence applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3