A new power prediction model for wind power generation

Author:

Yang Jiacheng,Wen Shiyuan,Lin Jia

Abstract

Abstract A wind power generation forecast model based on WOA-SVM is presented to exploit effective information in different data sets completely. This model addresses the difficulties associated with parameter selection, low prediction accuracy, and susceptibility to local optima in short-term wind energy prediction. The model systematically investigates the relationship between various wind parameters (mean wind speed, maximum wind speed, minimum wind speed, mean wind direction, and mean hull position) and wind power. It then evaluates the model’s performance using mean absolute error and coefficient of determination. The predictive outcomes of the WOA-SVM model are contrasted with those of the SVM model, PSO-SVM model, and extreme learning machine (ELM) model, utilising authentic data from a wind farm located in northern China in the year 2021. The overall evaluation indicates that the WOA-SVM model outperforms the other models in short-term wind energy prediction, demonstrating superior prediction accuracy.

Publisher

IOP Publishing

Reference8 articles.

1. Wind power interval prediction based on EMD and weighted Markov chain QR method [J];Yang;Journal of Solar Energy,2020

2. Review of windpower forecasting method [J];Qian;High Voltage Engineering,2016

3. Online transient stability risk assessment method considering wind power output uncertainty [J];Bao;Southern Power Grid Technology,2021

4. A review on short-term and ultra-short-term wind power prediction [J];Xue;Power System Automation,2015

5. Short-term wind power prediction model based on CEEMDAN and improved time convolutional network [J];Zhao;Power System Protection and Control,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3