Acute sinusitis classification using support and fuzzy support vector machines

Author:

Rustam Z,Angie N,Pandelaki J,Yunus R E

Abstract

Abstract The medical sector is currently in need of a method to aid in the classification of diseases, which contemporarily progresses into varying types. Therefore, the role of technology is highly relevant in the process of overcoming this challenge. This report discusses acute sinusitis, which is one of the most common forms of sinusitis, possibly caused by viruses, bacteria, fungi, pollutants, allergies, and also autoimmune reactions. Furthermore, the Support Vector Machines (SVM) and Fuzzy Support Vector Machines (FSVM) are used as a classification method to diagnose a person of acute sinusitis, therefore, this research aims to compare how both work, using Radial Basis Function (RBF) and Polynomial Kernel. Data of CT scan from Cipto Mangunkusumo Hospital, Indonesia was used to evaluate acute sinusitis, in terms of Accuracy, Sensitivity, Precision, and F1-Score. Thus, the final results indicate a better performance for FSVM than SVM in all perspectives, especially using the RBF kernel.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. A Framework for Enchancing the Thermographic Evaluation on Characteristic Areas for Pranasal Sinusitis Detection;Arora;Infrared Physics & Technology,2017

2. Acute and Chronic Sinusitis Causes and Management;Abdulaziz;The Egyptian Journal of Hospital Medicine,2017

3. Kernel Spherical K-Means and Support Vector Machine for Acute Sinusitis Classification;Arfiani;IOP Conference Series Materials Science and Engineering,2019

4. Orbital Complications of Acute Sinusitis;Bergmark,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3