Breast cancer clustering using modified spherical K-Means

Author:

Rustam Zuherman,Leudityara Fijri Ajeng

Abstract

Abstract Clustering is one of common techniques to group dataset into subsets based on distance measure. It has been applied in machine learning, pattern recognition, data mining, image analysis, and bioinformatics. Spherical k-means is one of clustering methods to address computational efficiency and solution quality in terms of deciding an action. In this paper, we used modified spherical k-means by using kernel radial basis function (RBF) by inner product measures in spherical k-means to cluster breast cancer Coimbra dataset from UCI machine learning into clusters. A new clusters will defined to healthy control cluster and patient cluster based on medical records. The highest accuracy results of kernel spherical k-means (SPKM) clustering method with radial basis function (RBF) kernel in breast cancer Coimbra (BCC) dataset is 72,41%. Addition of kernel to spherical k-means makes the results of accuracy be stable than using spherical k-means.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Analysis on Cancer Disease Using Machine Learning Techniques;Intelligent Systems Reference Library;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3