Implementation of Kalman filter algorithm on reduced models using Linear Matrix Inequality method and its application to measurement water level

Author:

Estuningsih Nenik,Fatmawati ,Apriliani Erna

Abstract

Abstract This paper presents the model reduction and estimation of the state variables of the water level system using the Linear Matrix Inequality (LMI) method and the Kalman filter algorithm. We assume the system is asymptotic stable, controllable and observable, then we reduce it by LMI method. The reduced system obtained is a system that remains asymptotic stable, controllable, and observable. The reduction error using LMI method is smaller than the reduction error using Balanced Truncated (BT) method and Singular Perturbation Approximation (SPA) method. Next, we implemented the Kalman filter algorithm in the original system and the system was reduced by LMI method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Data assimilation to estimate the water level of river;Apriliani;Journal of Physics : Conference Series,2017

2. Implementation of Kalman filter algorithm on models reduced using singular pertubation approximation method and its application to measurement of water level;Rachmawati;Journal of Physics : Conferences Series,2018

3. Data Assimilation Method for Environmental Problem;Apriliani;Indian Journal of Science and Technology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3