Stochastic Power Flow Calculation of High-Density Correlation Input Power Grid Based on Hybrid Gaussian Model

Author:

Qing Wang,Li Hongxin,Wei Wang,Rong Xue

Abstract

Abstract Traditional stochastic power flow calculation assumes that the input variables are uncorrelated and directly used to calculate high-density correlation input variables has certain errors. To this end, this paper proposes a stochastic power flow algorithm based on mixed Gaussian models that takes into account input correlation. First, a mixed Gaussian model is established based on load data, then uniform sampling and Naf transformation are used to process random variables, and the high-density correlation in the original space is converted into independent random variables, and the piecewise linear Monte Carlo method is used to carry out random power flow. Calculation can greatly reduce the calculation time and reduce the truncation error as much as possible. Finally, combined with the actual calculation examples of IEEE-30, the results show that the algorithm can simplify the actual calculation process, improve the calculation efficiency, and has certain practical value in engineering.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Probabilistic power flow calculation method considering the correlation of input variables [J];Chen;Chinese Journal of Electrical Engineering,2011

2. Probabilistic load flow by a multilinear simulation algorithm[J];Leite da Silva;IEE Proceedings C Generation, Transmission and Distribution

3. Probabilistic power flow calculation based on Monte Carlo simulation [J];Ding;Power System Technology,2001

4. Probabilistic optimal power flow incorporating wind power using point estimate methods[C];Ahmadi,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3