An exhaustive search optimization of heat transfer and pressure drop in Kelvin’s open cell foams

Author:

Iasiello M,Mauro G M,Bianco N,Andreozzi A,Chiu W K S,Naso V

Abstract

Abstract Thanks to their high effective thermal conductivity, specific surface area, and tortuosity, open-cell foams are well-known for their capability to enhance heat transfer in applications such as heat exchangers and volumetric solar air receivers. In the very recent years, innovative manufacturing techniques, including 3D designing and printing, have been looked very helpful to find foam morphologies that allow to maximize heat transfer and minimize pressure drop. Optimal foam structures can be obtained by means of pore-scale simulations, employing an exhaustive search with a bearable computational effort. A multi-objective optimization of convective heat transfer and pressure drop in Kelvin’s foams with air is presented in this paper. A pore-scale numerical model, with a uniform heat flux at the solid/fluid interface, is used to predict the interfacial convective heat transfer coefficient, hc , and pressure drop, Δp, in the foam. The cell size, porosity, cell anisotropy stretching factor, as well as the inlet velocity and the direction of the air, are assumed as the design variables for the optimization model, while the interfacial convective heat transfer coefficient and pressure drop are chosen as the objective functions to be maximized and minimized, respectively. Pareto fronts ranging from h = 110 W/m2 K and Δp = 0.77 Pa to hc = 460 W/m2 K and Δp = 51 Pa are predicted, within which the optimum point for the chosen foam morphology, air velocity and direction can be selected, according to the chosen criterion.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3