Abstract
Abstract
This paper presents a light-weight Hierarchical Fusion Convolutional Neural Network (HF-CNN) which can be used for grasping detection. The network mainly employs residual structures, atrous spatial pyramid pooling (ASPP) and coding-decoding based feature fusion. Compared with the usual grasping detection, the network in this paper greatly improves the robustness and generalizability on detecting tasks by extensively extracting feature information of the images. In our test with the Cornell University dataset, we achieve 85% accuracy when detecting the unknown objects.
Subject
General Physics and Astronomy