Nozzle Flow Simulation by Small Disturbance Approximation and Euler Method

Author:

Cheng Fanrui,Xu Yang,Zhou Wenbo

Abstract

Abstract The nozzle is a kind of equipment with a wide range of usage in the aerospace industry, of which its performance is vital for rocket engines by changing the geometry of the inner wall of the pipe section to accelerate the airflow. There are two types of nozzles commonly used: one is a tapered nozzle, and the other is a Laval nozzle. To analyze the flow phenomenon in nozzle is vital before transferring prototype design into industrial production, whether by laboratory experiment or computational simulation. In this paper, two different numerical methods are adopted to simulate gas behavior inside a simplified nozzle with upper and bottom symmetrical bumps. The first is to solve one dimensional Euler equations, and the other is to solve a scalar variable named velocity potential with small disturbance equations (SDE). The solutions under various inlet Mach numbers are compared by analysing the velocity fields and Mach number contours obtained by these two approaches. Similarities and differences between the Euler method and the potential SDE method for subsonic flow and supersonic flow are the key emphases in this work. For either subsonic or supersonic flow, the Mach number distribution along the nozzle’s center line shows a consistent trend for both methods. In contrast, the values of maximum or minimum Mach number have corresponding differences. Moreover, by using potential SDE simulation, several types of shock waves are successfully captured. All results show that the incoming airflow decelerates at the leading edge of the nozzle then accelerates when passing through the bumps, and finally decelerates back to the speed of inlet flow. The difference is that flows with varied Mach numbers has distinct velocity distributions in the nozzle.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. Taper Nozzle Design on CFD [J];Pang;Machine Building & Automation,2011

2. Numerical methods to solve Euler equations in one-dimensional steady nozzle flow;Colonna;Computer physics communications,2001

3. Transonic small disturbance potential equation;Balakrishnan;AIAA journal,2004

4. Multiple solutions and stability of the steady transonic small-disturbance equation;Liu;Theoretical and Applied Mechanics Letters,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3