Optimization Research of Er-doped Magneto-refractive Photonic Crystal Fiber Based on Surface Plasmon Resonance

Author:

Yao Siyu,Wang Dongying,Yu Yang,Zhang Zhenrong

Abstract

Abstract In order to meet the demand for large-scale magnetic field testing, this paper proposes a D-shaped magneto-refractive photonic crystal fiber (MRPCF) based on surface plasmon resonance (SPR) by using the erbium-doped material. By varying the diameter, location, and number of layers of the air holes, the four different Models A, B, C, and D structures are created, and the corresponding magnetic field sensing properties are analyzed. The simulation findings demonstrate that the magnetic field sensitivities of Models A, B, C, and D are 28 pm/mT, 48 pm/mT, 36 pm/mT, and 21 pm/mT, respectively when the magnetic field strength is 5 - 405 mT. Meanwhile, the figure of merit (FOM) of the four MRPCF-SPR sensors is investigated, which have FOMs of 4.8×10-4 mT-1, 6.4×10-4 mT-1, 1.9×10-4 mT-1, 0.9×10-4 mT-1. Model B has high sensitivity and large FOM. It shows that altering the structural design of the fiber can significantly improve the magneto-refractive effect of MRPCF. The proposed MRPCF has numerous uses in the areas of geological research, earthquake and tsunami monitoring, and military navigation. It can also be expected to enable quasi-distributed magnetic field sensing.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3