Successive Interference Cancellation for Orthogonal Chirp Division Multiplexing

Author:

Liu Haoyang,He Chuanlin,Bai Yiqi,Liang Zhanyuan,Yin Jiawei,Sun Zhaocheng

Abstract

Abstract In this paper, we propose a communication receivers’ architecture to simplify the Orthogonal Chirp Division Multiplexing (OCDM) channel equalization and to subtract multi-carrier interference followed by a successive interference cancellation (SIC) scheme in order to cancel the remaining interference. The interference introduced by underwater acoustic channel is estimated using a pre-acknowledged pilot symbol sequence, and then the interference can be optimally estimated and subtracted from the received signal. This process is repeated simultaneously for all OCDM carriers until a stationary point or a threshold is reached. Simulation results from Watermark are applied to illustrate the performance of the OCDM scheme with the presented successive interference cancellation algorithm. Results shows that the Bit Error Rate (BER) enhancement can reaches 102 in BCH1 channel. As expected, the combination of OCDM and presented SIC algorithm is shown to increase the output SNR over OCDM alone in multi-path shall water acoustic channel.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference13 articles.

1. Overview of channel models for underwater wireless communication networks;Domingo;Physical Communication,2008

2. Time-varying carrier frequency offset estimation in OFDM underwater acoustic communication;Avrashi;Signal Processing,2022

3. Cross-correlation quasi-gradient Doppler estimation for underwater acoustic OFDM mobile communications;Li;Applied Acoustics,2022

4. An efficient receiver structure for sweep-spread-carrier underwater acoustic links;Marchetti;IEEE Journal of Oceanic Engineering,2015

5. chirp division multiplexing;Ouyang;IEEE Transactions on Communications,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3