Research on Noise Reduction Method of Underwater Acoustic Signal Based on CEEMDAN Decomposition-Improved Wavelet Threshold

Author:

Jiang Si Yuan,Zhang Xin Xin,Mo Yi,Huang Yan Jie

Abstract

Abstract Due to the complex noise in the ocean environment, the signal-to-noise ratio of the hydrophone receiving signal is often low, making subsequent signal processing difficult. To solve this problem, this paper proposes using CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) decomposition algorithm combined with an improved wavelet threshold algorithm to process the signal, and obtain the reconstructed signal after denoising. In this method, the noise-containing signal is transformed by the function and decomposed into multiple natural mode components with frequencies ranging from high to low using the CEEMDAN algorithm. The correlation component and the non-correlation component are then determined using the cross-correlation function. The non-correlated compinents are denoised using the improved wavelet threshold method and the denoised signal is obtained by reconstructing the signal. Experimental results show that this method can improve the performance of underwater acoustic signal denoising.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3