Storm surge forecasting based on physics-informed neural networks in the Bohai Sea

Author:

Fu Cifu,Xiong Jie,Yu Fujiang

Abstract

Abstract Physics-informed neural networks (PINN), as a new method of integrating artificial neural networks (ANN) and physical laws, have been considered and applied in the fields of ocean forecasting and ocean research. In this paper, the simplified two-dimensional (2D) storm surge governing equation is introduced into an ANN to establish a PINN-based storm surge forecast model. The numerical simulation results of 14 storm surge events in the Bohai Sea are selected as the PINN training set, and 6.3% of the training set data are randomly selected to reconstruct the storm surge field information. The storm surge reconstructed at each tide station is nearly identical to the storm surge curve simulated by the numerical model, with the root mean square error (RMSE) less than 0.12 m and absolute error of maximum storm surge less than 0.2 m. The analysis of the storm surge field at key moments (storm surge height lager than 1 m) shows that the difference in storm surge field between the PINN reconstruction and the numerical model is generally less than 0.4 m. Two storm surge events in the Bohai Sea are selected as forecast cases, and the same network structure, parameters, and storm surge data assimilation scheme are used for predictions by the ANN, PINN, and numerical model. The results show that compared to the ANN and numerical models, the average relative error of the maximum storm surge predicted by the PINN is reduced by approximately 25%, which significantly improves the forecast accuracy, therefore, the PINN is suitable for storm surge forecasting and research due to its advantages in small sample data training and strong physical meaning.

Publisher

IOP Publishing

Reference19 articles.

1. Machine learning and its potential application to climate prediction [J];Shengping;Transactions of Atmospheric Sciences (in Chinese),2021

2. Prediction of storm surge based on recurrent neural network [J];Sen;CAAI Transactions on Intelligent Systems (in Chinese),2017

3. Storm surge nowcasting based on multi-variable LSTM neural network model [J];Yuanyuan;Mar Sci Bull (in Chinese),2020

4. Research on storm surge floodplain prediction based on ConvLSTM machine learning [J];Wenhong;Transactions of Atmospheric Sciences (in Chinese),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3