A Deep Learning Method for Arctic Sea Ice Type Classification Based on Active-Passive Microwave Data

Author:

Huang Rui,Xie Tao,Wang Changying

Abstract

Abstract The Arctic-scale classification of sea ice type is important in the fields of macro-monitoring in the Arctic, climate change assessment, and long time-series interannual variability of sea ice. To date, a lack of deep learning-based algorithms for detecting Arctic sea ice types from microwave sensors is comparatively rare. In this study, a sea ice type classification algorithm based on the U-Net-CBAM deep learning semantic segmentation network was developed by carrying out research on sea ice type classification algorithms in the Arctic through the integrated use of ASCAT scatterometer and AMSR2 radiometer data. The results of the study show that the proposed method achieves an impressive average accuracy of 94.1% in extracting sea ice categories using AARI ice maps. The results of the algorithm show a high degree of agreement with the OSI-SAF sea ice type daily products.

Publisher

IOP Publishing

Reference22 articles.

1. J Processes and impacts of Arctic amplification: A research synthesis;Serreze;Global planet change,2011

2. J Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat;Haas;Geo phys. Res. Lett.,2008

3. J Thinning of Arctic sea ice observed in Fram Strait: 1990–2011;Hansen;Geo phys. Res.: Oceans,2013

4. J Bayesian sea ice detection with the advanced scatterometer ASCAT;Rivas;IEEE Trans Geo sci Remote Sens,2012

5. J Multiyear Arctic sea ice classification using QuikSCAT;Swan;IEEE Trans Geosci Remote Sens,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3