Solution to Non-Linear Exponential Diophantine Equation 13 x + 31 y = z 2

Author:

Sugandha A,Tripena A,Prabowo A

Abstract

Abstract Linear Diophantine Equation is a polynomial equation with degree 1 and non-zero integer coefficient. The general form of Diophantine Linear equation with 2 variables is ax + by = c with a, b, c ϵ Z and a, b ≠ 0 . This may be stated as congruency axb ( mod m) . Therefore, Diophantine Linear equation ax + by = c may be solved if and only if the equivalent of congruency axb (mod m ) may be solved. If the Linear Diophantine Equation has solution, the solution will be integer pair x and y which fulfills equation ax + by = c . Differently with Non-linear Diophantine equation, there is no standard method to find the solution. There are 3 possibilities related to the solution of Diophantine equation, either linear or non-linear. The solution may be single solution, multiple solutions or no solution. This research will discuss the solution of non-linear exponential Diophantine equation 13 x + 31 y = z 2 using the congruency theory. The methods used may be simulation, literature study and journal. Using the congruency theory, it is found that Non-Linear Exponential Diophantine equation 13 x + 31 y = z 2 has no solution, for x, y, z of integers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3