Comparison and analysis of accuracy of various machine learning algorithms in abnormal state monitoring of internet of things devices

Author:

Zhang Bolun

Abstract

Abstract With the development of Internet of Things technology, more and more devices are connected to the Internet, including not only traditional computers, mobile phones and other smart terminal devices, but also various sensor devices. These sensor devices can collect a variety of environmental information and physical quantities, such as temperature, humidity, air pressure, light intensity, vibration, etc. These data have the characteristics of real-time, scale and diversity, and need to be processed and analyzed by appropriate algorithms. On the basis of previous studies, this project summarized the application of various machine learning algorithms in device state detection, compared the differences of various machine learning algorithms in sensor device detection and made comparative analysis, calculated the evaluation parameters of MSE, RMSE, MAE, MAPE, R² and other aspects of the machine learning regression model. Compare the effects of various regression models for better monitoring and prediction of equipment status. Through the analysis of a large number of historical data, different equipment state models can be established, and these models can be used to monitor and predict the current equipment state. This can effectively avoid production line downtime or other losses caused by equipment failures or abnormalities. At the same time, through the in-depth analysis of historical data, we can find some potential problems and take corresponding measures to prevent them. This project aims to summarize the application of various machine learning algorithms in device status detection, compare and contrast the differences of various machine learning algorithms in sensor device detection, realize efficient processing and analysis of sensor data, calculate MSE, RMSE, MAE, MAPE, R² and other evaluation parameters, and evaluate and compare each model. To provide more accurate, reliable and efficient equipment condition monitoring and forecasting services for enterprises and individuals.

Publisher

IOP Publishing

Reference13 articles.

1. Malware detection for IoT devices using hybrid system of whitelist and machine learning based on lightweight flow data[J];Masataka;Enterprise Information Systems,2023

2. Short-Term Load Forcasting for Smart Power Systems Using Swarm Intelligence Algorithm[J];P;Journal of Circuits, Systems and Computers,2022

3. Transport and Application Layer DDoS Attacks Detection to IoT Devices by Using Machine Learning and Deep Learning Models[J];Genaro;Sensors,2022

4. Early Generation and Detection of Efficient IoT Device Fingerprints Using Machine Learning[J];Ferman;International Journal on Advanced Science, Engineering and Information Technology,2022

5. IoT Device for Sitting Posture Classification Using Artificial Neural Networks[J];Francisco;Electronics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3