Adsorption behavior of formaldehyde gas on two-dimensional semiconductor monolayers MS2 (M=W, Mo)

Author:

Theu Luong Thi,Huy Tran Quang,Nhan Tran Thi,Bac T. Phung Viet,An Dinh Van

Abstract

Abstract Detecting methanal molecule, an indoor air pollutant and potential carcinogen, is crucial for safeguarding human health, ensuring occupational safety, and maintaining environmental quality. In this study, density functional theory calculations have been performed to explore the adsorption behavior of formaldehyde (methanal) gas on the surface of two-dimensional semiconductor monolayers MS2 (M=W, Mo). Using the Computational DFT-based Nanoscope tool, we compute binding energies and determine configurations at global minimum energy of molecule adsorbed monolayer MS2. Five nonlocal van der Waals functionals; revPBE-vdW, optPBE-vdW, vdW-DF2, optB88-vdW, and optB86b-vdW are used to compute the adsorption energy profiles. The calculated results show that: (i) the optPBE-vdW functional products the largest adsorption energy magnitude, (ii) Methanal molecule exhibits physical adsorption on both MoS2 and WS2 materials (iii) Adsorption of methanal molecules may enhance the electrical conductivity of MoS2 and WS2 upon the electron donation to molecule by substrates. The adsorption energy magnitude, bandgap reduction, and charge transfer of the methanal-MoS2 adsorption system are respectively 1.04, 1.27, and 1.47 times larger than those of the methanal-WS2 adsorption system, while the diffusion barrier energy is 0.25 times smaller. These characteristic adsorption parameters imply that methanal exhibits higher sensitivity to the MoS2 substrate. This study also provides an in-depth discussion regarding the interaction between methanal and the MS2 substrate, focusing on aspects of relaxed geometrical structures, potential energy surface, adsorption energy, response length, recovery time, work function, charge transfer, density of states, and energy band structure.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3