Effect of Liquid Feeding Rate on Carbonation of Precipitated Calcium Carbonate via Continuous Method

Author:

Salleh Emee Marina,Othman Rohaya,Mahim Zawawi,Sabri Siti Noorzidah

Abstract

Abstract Precipitated calcium carbonate (PCC) is an innovative product generated from lime that significantly offers various functional characteristics in fulfilling numerous market demand. PCC is produced by hydrating high-calcium quicklime resulting slurry so-called milk-of-lime and reacting the slurry with carbon dioxide (CO2) via carbonation process. The resulting PCC product is extremely white and typically has a uniform narrow particle size distribution. PCC is available in various crystal morphologies and sizes, which can be tailored to optimize performance in a specific application. The final properties of the PCC can be diversified by controlling processing parameters. In this current work, effect of liquid air pressure corresponding to feeding rate on a formation of PCC was investigated. In enhancing the product yield, the quicklime was initially converted into a solution containing calcium ion (Ca2+) using natural promoter agent. Subsequently, CO2 gas was continuously supplied into the Ca-rich ionic solution, thus inducing carbonation reaction to form PCC. This present work showed the carbonation time of producing PCC was effectively reduced as a function of feeding rate from 15 minutes at 10 psi to only 7 minutes at 50 psi. The PCC yield slightly increased from 19 g to 23 g with increasing the feeding rate from 10 psi to 50 psi, respectively. Morphologically, the PCC particles were dominated by rhombohedral structures at various feeding rates with an indication of intergrowth mechanism. This current finding signified the increasing feeding rate offered a significant reduction of PCC production time that might be efficiently applied by the industrial manufacturers.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Precipitated, Synthesis and Properties, Physicochem;Erdogan;Probl. Miner. Process.,2017

2. Fabrication of hollow porous shells of calcium carbonate from self-organizing media

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transforming Carbide Lime Waste into Marketable PCC: Effect of Mechanical Disturbance;Applied Mechanics and Materials;2024-02-05

2. Preliminary study on application of precipitated calcium carbonate as an alternative in water treatment;AIP Conference Proceedings;2024

3. Effect of Carbon Dioxide Gas Flow Rate on Production of PCC from Carbide Lime Waste;Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3