Author:
Salleh Emee Marina,Othman Rohaya,Mahim Zawawi,Sabri Siti Noorzidah
Abstract
Abstract
Precipitated calcium carbonate (PCC) is an innovative product generated from lime that significantly offers various functional characteristics in fulfilling numerous market demand. PCC is produced by hydrating high-calcium quicklime resulting slurry so-called milk-of-lime and reacting the slurry with carbon dioxide (CO2) via carbonation process. The resulting PCC product is extremely white and typically has a uniform narrow particle size distribution. PCC is available in various crystal morphologies and sizes, which can be tailored to optimize performance in a specific application. The final properties of the PCC can be diversified by controlling processing parameters. In this current work, effect of liquid air pressure corresponding to feeding rate on a formation of PCC was investigated. In enhancing the product yield, the quicklime was initially converted into a solution containing calcium ion (Ca2+) using natural promoter agent. Subsequently, CO2 gas was continuously supplied into the Ca-rich ionic solution, thus inducing carbonation reaction to form PCC. This present work showed the carbonation time of producing PCC was effectively reduced as a function of feeding rate from 15 minutes at 10 psi to only 7 minutes at 50 psi. The PCC yield slightly increased from 19 g to 23 g with increasing the feeding rate from 10 psi to 50 psi, respectively. Morphologically, the PCC particles were dominated by rhombohedral structures at various feeding rates with an indication of intergrowth mechanism. This current finding signified the increasing feeding rate offered a significant reduction of PCC production time that might be efficiently applied by the industrial manufacturers.
Subject
General Physics and Astronomy
Reference12 articles.
1. Precipitated, Synthesis and Properties, Physicochem;Erdogan;Probl. Miner. Process.,2017
2. Fabrication of hollow porous shells of calcium carbonate from self-organizing media
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献