Proton magnetization relaxation in aqueous suspensions of composite silicon-iron nanoparticles for biomedical applications

Author:

Kargina Yu V,Mironova A D,Kharin A Yu,Perepukhov A M,Ischenko A A,Timoshenko V Yu

Abstract

Abstract Silicon-iron composite nanoparticles produced by arc-discharge plasma ablation method were characterized by scanning electron microscopy, dynamic light scattering, X-ray fluorescence diffractometry, and the effect of iron content and size of the nanoparticles on hydrogen nuclei magnetization relaxation were investigated by nuclear magnetic resonance relaxometry. It was shown that increasing in iron content during the synthesis leads to distortion of the spherical shape of the nanoparticles and increasing of their mean sizes from 140 nm to 350 nm. Nonlinear dependence of the longitudinal and transverse relaxivities from iron content was demonstrated. Increase in the iron concentration above 2.5 at. % leads to reduction of the both relaxivities, which can be explained by nonuniform distribution of iron and formation of iron containing agglomerates. It was shown that transverse and longitudinal relaxivities of the nanoparticles in their aqueous solutions inversely proportional from their hydrodynamic diameters in the range of 100 – 300 nm. The possibilities of using composite silicon-iron nanoparticles for biomedical applications are discussed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3