Study on Radial Distribution of Fragments Velocity of D-shaped Fragmentation Warhead

Author:

Liu W L,Jiang J W,Li M,Yin G,Sun X

Abstract

Abstract For the asymmetric D-shaped fragmentation warhead with high charging coefficient and space efficiency, we simulate the driving process of fragments under typical eccentric initiation by using the fluid-structure interaction algorithm, and obtained the change rule of the fragment velocity radial distribution with the central angel, the thickness and material of the upper end cap. The results of numerical simulation show that the fragment velocity of D-shaped warhead increases gradually from the reverse to the forward direction, the velocity of fragment in forward direction increases by about 10% under single-point eccentric initiation compared with the cylindrical casing under center initiation, and the fragment velocity under double-point eccentric initiations is higher than single-point eccentric initiation; The initial velocity of the fragment has a positive correlation with the thickness and density parameters of the upper end cap; the mass of the warhead and the total kinetic energy of the fragments in the forward area increase with the increase of the central angle, but their ratio increases first and then decreases with the increase of the central angle. The results can be applied to structural optimization design and power evaluation of the warhead.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference11 articles.

1. On the pattern of radial distribution pattern of initial velocities of fragments under asymmetrical initiation[J];Feng;Acta Armamentarii,1993

2. Fragment Velocity Distribution of Velocity Enhanced Warhead under Double Symmetric Initiations[J];Wang;Propellants, Explosives, Pyrotechnics,2016

3. Matching of deformation control parameters of deformable warheads[J];Yang;Chinese Journal of Explosives & Propellants,2012

4. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead[J];Li;Explosion and Shock Waves,2019

5. The Dispersion Rule of Fragments about the Asymmetric Shell[J];Ding,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3