Simulation study on erosion of barrel under thermal-mechanical-chemical coupling environment

Author:

Wang Jun,Yang Diao,Liu Huan

Abstract

Abstract Artillery is known as the “God of War”. When the ballistic performance of the barrel is reduced to the allowable value specified by the index due to erosion and wear, the life of the barrel is terminated, and the artillery equipment completely loses its combat effectiveness. The erosion and wear of the barrel involves many factors such as temperature, mechanics, chemistry. In this paper, based on the theory of internal ballistics and heat conduction, the temperature gradient distribution law of the inner wall of the barrel during the firing process of large-caliber artillery is simulated and calculated. Combined with Fick’s second law and the theory of metal phase transition, The relationship between the [C] content in the thermochemically affected layer of the barrel and the number of firing, the relationship between the thickness of the thermally affected layer and the explosion temperature of the propellant and the temperature of the inner wall were quantitatively analyzed. On this basis, the anatomical analysis of different parts of the barrel after firing verified the accuracy of the erosion model, quantitatively revealed the barrel erosion mechanism, and clarified the direction for the life improvement of large-caliber artillery barrels.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3