Iterative approach to linear ideal MHD modeling of plasma response to 3D magnetic perturbations in tokamaks

Author:

Lainer P,Kasilov S V,Kernbichler W,Reichelt M,Albert C G

Abstract

Abstract The class of plasma instabilities known as edge-localized modes (ELMs) is of special concern in tokamaks operating in high-confinement mode, such as ASDEX Upgrade and ITER. One strategy for ELM mitigation is the application of resonant magnetic perturbations (RMPs) via external coils. Kinetic modeling accurately describes the plasma response to these RMPs ab initio, particularly the parallel shielding currents at resonant surfaces. Away from resonant surfaces, ideal magnetohydrodynamics (iMHD) is expected to yield sufficiently accurate results, providing a computationally less expensive option that could complement kinetic modeling. The code MEPHIT has been developed to solve the linearized iMHD equations in a way that is compatible with iterative kinetic modeling approaches. We consider an axisymmetric iMHD equilibrium in realistic tokamak geometry under the influence of a quasi-static non-axisymmetric external perturbation from ELM mitigation coils. The plasma responds to this external magnetic perturbation with a current perturbation, which in turn produces a magnetic field perturbation. The resulting fixed-point equation can be solved in a self-consistent manner by preconditioned iterations in which Ampère’s equation and the magnetic differential equations for pressure and current are solved in alternation until convergence is reached. After expansion in toroidal Fourier harmonics, these equations are solved on a triangular mesh in the poloidal plane using finite elements. These results are then benchmarked against established codes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3