Author:
Banerjee Debabrata,Song Shaodong,Xie Huasheng,Liu Bing,Wang Mingyuan,Liu Wenjun,Chen Bin,Han Lei,Luo Di,Song Yunyang,Song Xianming,Liu Minsheng,Shi Yuejiang,Martin Peng Y. K.,Petrov Yu. V.,Harvey R. W.
Abstract
Abstract
The fully non-inductive spherical tokamak EXL-50, built and operated by the ENN private limited company, has routinely achieved high current drive efficiency of ∼ 1 A/W in only ECRH powered experiments. We have numerically investigated the effectiveness of multiple electron cyclotron resonance (ECR) harmonics in generating such a high efficiency of electron cyclotron current drive (ECCD) in non-inductive plasma start-up. The Fokker-Planck equation is numerically solved to obtain the electron distribution function, under the steady state of relativistic nonlinear Coulomb collision and quasi-linear diffusion operators, for calculating plasma current driven by the injected EC waves. Multi-pass absorption simulations, done with the CQL3D code for extra-ordinary EC waves, demonstrate over 1 A/W efficiency in current for a relatively low density (∼ 2 × 1018
m
−3), and low temperature (∼ 100 eV) plasma, consistent with the experimental results observed on EXL-50. Systematic scanning of different ECR harmonics in simulation has revealed that the multi-harmonic resonance interaction in EXL-50 plays a pivotal role in generating the energetic electron tail responsible for the current.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献