Author:
Kozhukhova N I,Shurakov I M,Kozhukhova M I,Yu Elistratkin M,Alfimova N I
Abstract
Abstract
Based on the knowledge that exists today, it is generally accepted that there are basic parameters and characteristics to obtain effective mixtures for their use in 3D printing. Rheological behavior and setting time (initial and final) are those characteristics that determine workability, as well as the speed and nature of hardening of the molded pastes and, as a result, the final framework and the integrity of the resulted structure. Among the promising options for 3D printing, the literature often contains information on alkali-activated binders. In this work, an alkali-activated binding system based on electrometallurgical slag, as well as citrogypsum, a waste of the industrial production of citric acid, was studied. Some rheological characteristics of experimental binders were considered: the nature of the mixture flow under the action of torsional loads and their initial and final setting times. It was found that the joined use of both components in the experimental system “slag - water”: an alkaline activator and citrogypsum, promotes the transition of the character of the system from thixotropic to mixed: dilatant-thixotropic (for the Na2SiO3 activator) and dilatant (for the NaOH activator). It was found that the addition of alkaline activators and citrogypsum to the binding system separately in both cases helps to reduce the initial and final setting times from 18 and 22 hours to 1 hour and 1.5 hours. Also, experimental results have shown that the jointed action of both components: an alkaline activator and cytogypsum, has a synergistic effect on the setting time.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献