Comparison of the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained state

Author:

Kayumova E M,Churakova A A,Latypov O R

Abstract

Abstract This article studies the corrosion behavior of the TiNi alloy in the coarse-grained and ultrafine-grained states. The study of the influence of the initial microstructure on the corrosion behavior of the TiNi alloy was carried out by the gravimetric method in the NaCl and H2SO4 solution for a month. Studies was shown that as a result of the action of a corrosive medium from a sample in a coarse-grained state, it undergoes greater destruction, pitting corrosion was observed, at the same time, in an ultrafine-grained sample only traces of corrosion products are observed on the surface of the samples. Investigations with an inverted light microscope in a dark field made it possible to observe corrosion products and determine their volume fraction. Evaluation of the corrosion rate showed that in the coarse-grained state it is 126 times higher than the corrosion rate in the ultrafine-grained state. Analysis of X-ray phase analysis showed that in the coarse-grained state after corrosion tests, a significant proportion of the TiNiH1.4 phase is observed, while in the ultrafine-grained state all phases correspond only to the TiNi phases. The TiNi alloy contains an Ti2Ni phase enriched Ti both in the coarse-grained state and in the ultrafine-grained state. Moreover, in a coarse-grained state, its share is 2 times higher.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys;Otsuka;Prog. Mater. Sci.,2005

2. On the thermoelastic equilibrium on martensitic transformations;Kurdyumov;Sov. Phys. Dokl.,1949

3. Isothermal martensitic transformation under hydrostatic pressure in an Fe,Ni–C alloy at low temperatures;Xie;Acta Metall. Mater.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3