Domestic garbage recognition and detection based on Faster R-CNN

Author:

Nie Zhifeng,Duan Wenjie,Li Xiangdong

Abstract

Abstract The core of intelligent garbage sorting is target identification and detection. In order to achieve effective garbage sorting, on the basis of deep learning, the Faster R-CNN target detection model and ResNet50 image classification model are used to identify and train 3984 garbage images, and predict 3552 images. The results show that the accuracy of garbage recognition is 89.681%, the average accuracy of each garbage prediction is 91.68%, and the accuracy of each category of garbage image prediction is over 93.3%. Through the identification, detection and classification prediction of garbage images, it provides data support for the intelligent classification of domestic garbage.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. Investigation of Community Domestic Waste Classification Behavior and Research on Optimization Strategy;Sun;Renewable resources and circular economy,2019

2. Uniprocessor Garbage Collection Techniques;Wilson;Lecture Notes in Computer Sciense,1992

3. Intelligent Fusion of Deep Features for Improved Waste Classification;Kashif;IEEE Access,2020

4. Object recognition algorithm based on deep convolutional neural network;Huang;Computer application,2016

5. Going deeper with convolutions;Szegedy,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm;SAE Technical Paper Series;2024-04-09

2. Visual Detection of Waste using YOLOv8;2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS);2023-06-14

3. Road Garbage Classification Using ResNet50;2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2023-05-25

4. Waste Classification from Digital Images Using ConvNeXt;Image and Video Technology;2023

5. Small Visual Object Detection in Smart Waste Classification Using Transformers with Deep Learning;Image and Vision Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3