Reservoir computing with nonlinear optical media

Author:

Ferreira Tiago D.,Silva Nuno A.,Silva Duarte,Rosa Carla C.,Guerreiro Ariel

Abstract

Abstract Reservoir computing is a versatile approach for implementing physically Recurrent Neural networks which take advantage of a reservoir, consisting of a set of interconnected neurons with temporal dynamics, whose weights and biases are fixed and do not need to be optimized. Instead, the training takes place only at the output layer towards a specific task. One important requirement for these systems to work is nonlinearity, which in optical setups is usually obtained via the saturation of the detection device. In this work, we explore a distinct approach using a photorefractive crystal as the source of the nonlinearity in the reservoir. Furthermore, by leveraging on the time response of the photorefractive media, one can also have the temporal interaction required for such architecture. If we space out in time the propagation of different states, the temporal interaction is lost, and the system can work as an extreme learning machine. This corresponds to a physical implementation of a Feed-Forward Neural Network with a single hidden layer and fixed random weights and biases. Some preliminary results are presented and discussed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Scalable optical learning operator;Teğin;Nature Computational Science,2021

2. Inference in artificial intelligence with deep optics and photonics;Wetzstein;Nature,2020

3. Nonlinear photonic dynamical systems for unconventional computing;Brunner;Nonlinear Theory and Its Applications, IEICE,2022

4. A survey of approaches for implementing optical neural networks;Xu;Optics & Laser Technology,2021

5. Reservoir computing with solitons;Silva;New Journal of Physics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3