Author:
Pereira C,Abreu M,Cabral A,Rebordão J M
Abstract
Abstract
A Digital Micromirror Device (DMD) is a technology developed by Texas Instruments, that consists in a two-dimensional array of micromirrors, which can be individually tilted between two positions. It has been used as a digital video and image processing solution,
commonly found in Digital Light Processing (DLP) video projectors. Over the years, DMDs have become popular in different fields: industrial, automotive, medical, government and home user solutions. In the astronomy field, it has been also considered in on-ground space instrumentation and it has been proposed for the development of some astrophysical space
instruments. In order to evaluate the actual impact of such device in the instrument optical design, it is important to know how the light behaves when it interacts with a DMD, namely in what regards to the diffraction process when a light beam is reflected by a periodic array of
micromirrors. In this study we describe how we simulate the diffraction patterns produced by a periodic array of micromirrors, for coherent and incoherent sources of light. The results from simulations are verified against laboratory experiments, described also in this study.
Subject
General Physics and Astronomy
Reference13 articles.
1. Emerging digital micromirror device (DMD) applications;Dudley,2003
2. Introduction to ±12 degree orthogonal digital micromirror devices (DMDs);Lee,2018
3. Video processing for DLP display systems;Markandey,1996
4. Applications of DMDs for astrophysical research;Robberto,2009
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献