Abstract
Abstract
With the research of influence maximization algorithm, many researchers have found that the existing algorithm has the problem of overlapping influence of seed nodes. In order to solve the problem of overlapping influence of seed nodes, this paper proposes an IMCS algorithm based on community structure. Firstly, we divide the community through the central node, and the quality of community division is ensured by defining community fitness and node contribution. Then through the analysis of the community division results, the seed node selects the one with the largest degree. Since most of the nodes activated by seed nodes of different communities also belong to different communities, this method solves the problem of overlapping influence to a certain extent. The experimental results show that the effectiveness of the IMCS algorithm is verified under the real network, cooperative network and artificial network, and the IMCS algorithm has a better effect than IEIR and Degree algorithms in most networks under the IC model.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献