A Review on Arabic Sign Language Translator Systems

Author:

Mohammed R. M.,Kadhem S. M.

Abstract

Abstract Deaf and dumb peoples are suffering difficulties most of the time in communicating with society. They use sign language to communicate with each other and with normal people. But Normal people find it more difficult to understand the sign language and gestures made by deaf and dumb people. Therefore, many techniques have been employed to tackle this problem by converting the sign language to a text or a voice and vice versa. In recent years, research has progressed steadily in regard to the use of computers to recognize and translate the sign language. This paper reviews significant projects in the field beginning with important steps of sign language translation. These projects can be classified according to the use of an input device into image-based and device-based. Image-based is used the traditional methods of image processing and features extraction, by using a digital camera such as a webcam. Device-based uses different devices like (Microsoft Kinect sensor, electronic glove and leap motion controller). These devices are used to reduce the time of both image processing and extraction features. Then the accuracy rates of using device-based are ranged between in 90%-99% where the accuracy rates of using image-based are ranged between 85%-93%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference49 articles.

1. Arabic static and dynamic gestures recognition using leap motion;Hisham;J. Comput. Sci.,2017

2. Arabic Sign Language Recognition System on Smartphone;Zakariya,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3