Author:
Li Ang,Zhuo Renfu,Tang Xiaoli,Wang Jun,Yan De,Men Xuehu,Geng Baisong,Wu Zhiguo,Yan Pengxun,Zhang Guangàn
Abstract
Abstract
A straightforward solvothermal technique was used to create tin monosulfide (SnS) nanosheets that were reduced graphene oxide (RGO) bonded. On the folded RGO surface, it was discovered that the 2D SnS nanosheets had several layers that were evenly distributed. When exposed to visible light, a flexible photodetector made of PET substrate exhibits a 1.4 mA W−1 optical response, 3.5 × 107 Jones detection rate, and quick rise and fall times. (τ
rise = τ
decay = 0.08 s). When exposed to visible light, the methylene blue’s (MB) photocatalytic breakdown was used to test the photocatalytic performance of the synthesized SnS-RGO hybrid nanosheets. The fact that almost all of the MB dissolved in under one hour suggested that SnS-RGO nanosheets make promising high-performance photocatalysts.
Subject
Computer Science Applications,History,Education