SnS-RGO Hybrid Nanosheets as High Performance Flexible Photodetectors and Visible-Light Photocatalysts

Author:

Li Ang,Zhuo Renfu,Tang Xiaoli,Wang Jun,Yan De,Men Xuehu,Geng Baisong,Wu Zhiguo,Yan Pengxun,Zhang Guangàn

Abstract

Abstract A straightforward solvothermal technique was used to create tin monosulfide (SnS) nanosheets that were reduced graphene oxide (RGO) bonded. On the folded RGO surface, it was discovered that the 2D SnS nanosheets had several layers that were evenly distributed. When exposed to visible light, a flexible photodetector made of PET substrate exhibits a 1.4 mA W−1 optical response, 3.5 × 107 Jones detection rate, and quick rise and fall times. (τ rise = τ decay = 0.08 s). When exposed to visible light, the methylene blue’s (MB) photocatalytic breakdown was used to test the photocatalytic performance of the synthesized SnS-RGO hybrid nanosheets. The fact that almost all of the MB dissolved in under one hour suggested that SnS-RGO nanosheets make promising high-performance photocatalysts.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3