Improved Parallel Genetic Algorithm Based on Resetting Strategy and Hash Table

Author:

Lu Peng,Xiao Xiaoqiang,Wang Jijin,Ning Weixun

Abstract

Abstract In the process of parallel genetic algorithm (PGA) convergence, the probability of generating repeated individuals in a new generation is gradually increasing, which leads to repetitive computations of fitness values. In order to improve the time-efficiency and quality of solutions, an improved algorithm based on resetting strategy and hash table (RHPGA) is proposed. On the one hand, RHPGA takes advantage of the low time complexity of hash table lookup to reduce fitness values’ calculation of repeated individuals. On the other hand, RHPGA uses a resetting strategy to improve the optimal solution searching ability. By solving a set covering problem, PGA and RHPGA are compared. The experiment proves that RHPGA can almost increase the time-efficiency by 300% and quality of solutions by 15%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Parallelism and evolutionary algorithms[J];Alba;IEEE Transactions on Evolutionary Computation,2002

2. On the impact of the migration topology on the Island Model[J];Ruciński;Parallel Computing,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3