Author:
Anischenko I V,Pokrovskii S V,Rudnev I A
Abstract
Abstract
In this work we present a computational model for a magnetic levitation system based on stacks of 12 mm x 12 mm second generation GdBa2Cu3O7-x high temperature superconducting (HTSC) tapes. In our model we have used the magnetic and transport characteristics of real industrial HTSC tapes. The thermal properties of each layer of high-temperature superconducting tape and the features of the layered structure of whole stack have also been taken into account. The numerical simulation was performed using the finite element method. Distributions of both magnetic field throughout the space and the current in every tape of the stack were calculated for two cases: (i) cryocooler cooling mode and (ii) cooling in the liquid nitrogen. The magnetization curves of the stacks in external field of a permanent NdFeB magnet and levitation force dependence on the gap between the magnet and the HTS tapes stack in these cooling modes were obtained. We have calculated heat transfer and temperature distribution in the system taking into account the effect of thermal properties of Hastelloy substrate, as well as Cu and Ag stabilization layers on the cooling process and dynamic magnetization. Simulation results were compared with the experimental data and a good agreement with numerical ones was shown.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献