Overview of Long-form Document Matching: Survey of Existing Models and Their Challenges

Author:

Cheng Yaokai,Chen Ruoyu,Yuan Xiaoguang,Yang Yuting,Jiang Shan,Yang Bo

Abstract

AbstractLong-form document matching is an important direction in the field of natural language processing and can be applied to tasks such as news recommendation and text clustering. However, long-form document matching suffers from noisiness and sparsity of semantic information in long text. Using short-form document matching methods on a long-form matching problem is not satisfactory. Long-form document matching has attracted the attention of researchers, who have proposed many effective methods. Methods for matching long texts can be divided into three categories: traditional bag-of-words-based models, traditional deep learning-based models, and pre-training-based models. This study reviews typical methods of long-form document matching, analyzes their advantages and disadvantages, and discusses possible future developments.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference17 articles.

1. Learning deep structured semantic models for web search using clickthrough data;Huang,2013

2. A latent semantic model with the convolutional-pooling structure for information retrieval;Shen,2014

3. Convolutional neural network architectures for matching natural language sentence;Hu,2014

4. Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval;Palangi;IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP),2016

5. A deep architecture for semantic matching with multiple positional sentence representations;Wan,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3