Numerical simulation and experimental investigation of heat transfer and flow structures around heated spherical bluff bodies

Author:

Abed A H,Shcheklein S E,Pakhaluev V M

Abstract

Abstract The objective of this work is to evaluate the influence of vortices on heat transfer behaviour and a flow structure around a heated sphere. Numerical simulation and experimental verification are performed using a stationary copper sphere located inside a cylindrical channel with a constant channel-to-sphere diameter ratio. Numerical simulation is done for three-dimensional steady-state flow using ANSYS-FLUENT by solving the Reynolds-averaged Navier Stokes (RANS) equations. Over the test range of Reynolds numbers (2500-55000), CFD simulation results are in reasonable agreement with experimental data. The importance of vortices on heat transfer behaviour was investigated by taking the surface temperature and heat transfer coefficient (HTC) measurements around the sphere surface as a function of a zenith angle. The CFD simulation results confirmed that the impact of vortices on heat transfer behavior occurred in a lower-rear area of the sphere with a zenith angle (from 120° to 180°).

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3