Classification of Seismic Signal by Evaluating Broadband Networks Station in Sumatera Fore-Arc

Author:

Sinambela Marzuki,Tarigan Kerista,Humaidi Syahrul,Situmorang Marhaposan

Abstract

Abstract Classification of seismic signal waveform is an essential component to realize the characteristics of the signal. The processing of the waveform signal is broadly used for the analysis of the real-time seismic signal. The numerous wavelet filters are developed by spectral synthesis using machine learning python to realize the signal characteristics. Our research aims to generate the performance of seismic signal and processing the waveform from Broadband Network Station by using Wavelet-Based on Machine Learning. In this case, we use Continuous Wavelet Transform (CWT) on Morlet. CWT is also clearly to identify spectral amplitudes and frequency-energy from the component of signal seismic performed by Broadband Network in Indonesia. The characteristic of the digital broadband network in Indonesia is variance. Our project tries to classification and evaluate the Broadband Seismic Network which deployed in Sumatera Region, Indonesia by using Power Spectral Density Probability Density Function (PSDPDF).

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. A survey of machine learning for big data processing;Qiu;EURASIP J. Adv. Signal Process.,2016

2. Machine learning: A crucial tool for sensor design;Zhao;Algorithms,2008

3. Waveform analysis of broadband seismic station using machine learning Python based on Morlet wavelet;Darnila;IOP Conf. Ser. Mater. Sci. Eng.,2018

4. Machine Learning for Waveform Spectral Analysis on Nuclear Explosion Signal and Performance of Broadband Vertical Component;Tarigan;J. Phys. Conf. Ser.,2018

5. A Method to Establish Seismic Noise Baselines for Automated Station Assessment;McNamara;Seismol. Res. Lett.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster Analysis and Seismicity of The Samosir Using Machine Learning Approach;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3