Development of oxygen sensor for pyrochemical reactors of spent nuclear fuel reprocessing

Author:

Valtseva A I,Pershin P S,Kalyakin A S,Volkov A N,Suzdaltsev A V,Zaikov Yu P

Abstract

Abstract The problem of closing the nuclear fuel cycle is not only related to the development of new types of nuclear fuel and the operation of fast neutron reactors, but also to the complex schemes for the pyrochemical reprocessing of spent nuclear fuel (SNF), which, in turn, require adherence to strict process parameters. In particular, this concerns the operation of the reduction of oxidized SNF mainly by metallic lithium. The paper presents the basic scientific principles and the results of experimental verification of the operation of an electrochemical sensor for measuring oxygen in molten salts in pyrochemical reactors for the reprocessing of spent nuclear fuel. The sensor design consists of two combined electrochemical cells based on the solid electrolyte ZrO2-Y2O3 with a common reference electrode. The sensor allows continuous measurement of the oxygen activity in the oxide-chloride melt and the partial pressure of oxygen in the gas atmosphere above the melt directly during the process of pyrochemical processing. Experimental verification of the sensor performance was performed in a reactor with LiCl-Li2O melts at a temperature of 650 ° C. The resource of continuous sensor operation exceeded 500 hours, and the number of thermal cycles without destruction was at least 20. The sensor readings were found to depend on the specified Li2O content in the LiCl melt.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3