A Study about Principle Component Analysis and Eigenface for Facial Extraction

Author:

Erwin ,Azriansyah M,Hartuti N,Fachrurrozi Muhammad,Adhi Tama Bayu

Abstract

Abstract Facial recognition is one of the most successful applications of image analysis and understanding. This paper presents a Principal Component Analysis (PCA) and eigenface method for facial feature extraction. Several performance metrics, i.e. accuracy, precision, and recall are taken into account as a baseline of experiment. Furthermore, two public data sets, namely SOF (Speech on faces) and MIT CBCL Facerec are incorporated in the experiment. Based on our experimental result, it can be revealed that PCA has performed well in terms of accuracy, precision, and recall metrics by 0.598, 0.63, and 0.598, respectively.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Face Recognition Using Principal Component Analysis Method;Chandra Paul;Int. J. Adv. Res. Comput. Eng. Technol.,2012

2. Multi-object face recognition using Content Based Image Retrieval (CBIR);Fachrurrozi,2017

3. The grouping of facial images using agglomerative hierarchical clustering to improve the CBIR based face recognition system;Fachrurrozi,2017

4. Towards End-to-End Face Recognition through Alignment Learning;Zhong,2017

5. Real-Time Face Detection and Recognition Using Principal Component Analysis ( PCA ) - Back Propagation Neural Network ( BPNN ) and Radial Basis Function ( RBF );Al-bamarni;J. Theor. Appl. Inf. Technol.,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3