Supervised and Unsupervised Data Mining Techniques on Employability of Public Higher Learning Institute Graduates in Malaysia

Author:

Pauzi Wan Nurul Dalilah Wan,Hasan Haliza,Mahmud Zamalia

Abstract

Abstract It is the students’ dream to secure a job right after graduation. However, there are factors that hinder their employability. This study aims to predict Malaysian graduates’ employment status based on employability factors and to profile the graduates’ satisfaction towards their curricular activities and information and communications technology (ICT) skills. A total of 375,507 student records were obtained based on tracer studies conducted by the Malaysian Ministry of Higher Education between 2015 and 2018. Due to the large amount of data with various categories, supervised and unsupervised data mining techniques were used to unmask the underlying variables and reveal hidden information about graduates’ employability for better tracing the employment status of graduates. Various types of consolidation techniques were also used to reduce the number of levels for categorical inputs in the dataset, namely, classifiers without consolidation, with manual consolidation, and with tree consolidation. Three types of data mining variable selections were used to improve the performance of the classifiers in predicting employment status. The results show that logistic regression (LR) without variable selection is the best classifier for data without consolidation, while LR using variable selection with LR stepwise is the best classifier for data with manual and tree consolidations. In profiling the satisfaction of graduates, K-Means Clustering was used, which revealed seven clusters. The most prominent cluster consisted of graduates who were highly satisfied with their ICT skills but less satisfied with their curricular activities. These data mining techniques were able to trace graduates’ employment status and identify the success factors of graduates’ employability.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Supervised and Unsupervised Learning in Data Mining for Employment Prediction of Fresh Graduate Students;Abdul Rahman;Journal of Telecommunication, Electronic and Computer Engineering,2017

2. Estimating a Prediction Model for the Early Identification of Low Employability Graduates in Malaysia;Awang-Hashim;Singapore Economic Review,2015

3. Perceived Employability of Business Graduates: The Effect of Academic Performance and Extracurricular Activities;Pinto;Journal of Vocational Behavior,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Data Mining Approach to Construct Classification Model for Predicting Tourism Graduates Employability;2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA);2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3