Abstract
Abstract
The paper aims at solving a complex equation with Gamma - integral. The solution is the infected size (p) at equilibrium. The approaches are both numerical and analytical methods. As a numerical method, the higher-order composite Newton-Cotes formula is developed and implemented. The results show that the infected size (p) increases along with the shape parameter (k). But the increase has two phases: an increasing rate phase and a decreasing rate phase; both phases can be explained by the instantaneous death rate characteristics of the Gamma distribution hazard function. As an analytical method, the Extreme Value Theory consolidates the numerical solutions of the infected size (p) when k ≥ 1 and provides a solution limit (
p
=
1
−
1
2
R
) as k goes to +∞.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献