Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method

Author:

Nainggolan Rena,Perangin-angin Resianta,Simarmata Emma,Tarigan Astuti Feriani

Abstract

Abstract K-Means is a simple clustering algorithm that has the ability to throw large amounts of data, partition datasets into several clusters k. The algorithm is quite easy to implement and run, relatively fast and efficient. Another division of K-Means still has several weaknesses, namely in determining the number of clusters, determining the cluster center. The results of the cluster formed from the K-means method is very dependent on the initiation of the initial cluster center value provided. This causes the results of the cluster to be a solution that is locally optimal. This research was conducted to overcome the weaknesses in the K-Means algorithm, namely: improvements to the K-Means algorithm produce better clusters, namely the application of Sum Of Squared Error (SSE) to help K-Means Clustering in determining the optimum number of clusters, From this modification process, it is expected that the cluster center obtained will produce clusters, where the cluster members have a high level of similarity. Improving the performance of the K-Means cluster will be applied to determining the number of clusters using the elbow method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. SISTEM APLIKASI BERBASIS OPTIMASI METODE ELBOW UNTUK PENENTUAN CLUSTERING PELANGGAN;Muningsih;Joutica,2018

2. PENGEMBANGAN SISTEM ANALISIS AKADEMIS MENGGUNAKAN OLAP DAN DATA CLUSTERING STUDI KASUS : AKADEMIK UNIVERSITAS SEBELAS MARET SURAKARTA;Bakhtiar;J. Teknol. Inf. ITSmart,2016

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3