Extending the distributed computing infrastructure of the CMS experiment with HPC resources

Author:

Adelman-McCarthy J,Boccali T,Caspart R,Delgado Peris A,Fischer M,Flix Molina J,Giffels M,Hernández J M,Hufnagel D,Kühn E,Madlener T,Mohapatra A K,Ozturk H,Pérez-Calero Yzquierdo A,Spiga D,Wissing C

Abstract

Abstract Particle accelerators are an important tool to study the fundamental properties of elementary particles. Currently the highest energy accelerator is the LHC at CERN, in Geneva, Switzerland. Each of its four major detectors, such as the CMS detector, produces dozens of Petabytes of data per year to be analyzed by a large international collaboration. The processing is carried out on the Worldwide LHC Computing Grid, that spans over more than 170 compute centers around the world and is used by a number of particle physics experiments. Recently the LHC experiments were encouraged to make increasing use of HPC resources. While Grid resources are homogeneous with respect to the used Grid middleware, HPC installations can be very different in their setup. In order to integrate HPC resources into the highly automatized processing setups of the CMS experiment a number of challenges need to be addressed. For processing, access to primary data and metadata as well as access to the software is required. At Grid sites all this is achieved via a number of services that are provided by each center. However at HPC sites many of these capabilities cannot be easily provided and have to be enabled in the user space or enabled by other means. At HPC centers there are often restrictions regarding network access to remote services, which is again a severe limitation. The paper discusses a number of solutions and recent experiences by the CMS experiment to include HPC resources in processing campaigns.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference26 articles.

1. Architecture and prototype of a WLCG data lake for HL-LHC;Bird;EPJ Web Conf.,2019

2. HEPCloud, an Elastic Hybrid HEP Facility using an Intelligent Decision Support System;Mhashilkar;EPJ Web of Conf.,2019

3. XSEDE: Accelerating Scientific Discovery;Towns;Computing in Science & Engineering

4. CernVM-FS: delivering scientific software to globally distributed computing resources;Blomer

5. A fully unprivileged CernVM-FS;Blomer;EPJ Web of Conf.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3