Machine Learning for Particle Flow Reconstruction at CMS

Author:

Pata Joosep,Duarte Javier,Mokhtar Farouk,Wulff Eric,Yoo Jieun,Vlimant Jean-Roch,Pierini Maurizio,Girone Maria

Abstract

Abstract We provide details on the implementation of a machine-learning based particle flow algorithm for CMS. The standard particle flow algorithm reconstructs stable particles based on calorimeter clusters and tracks to provide a global event reconstruction that exploits the combined information of multiple detector subsystems, leading to strong improvements for quantities such as jets and missing transverse energy. We have studied a possible evolution of particle flow towards heterogeneous computing platforms such as GPUs using a graph neural network. The machine-learned PF model reconstructs particle candidates based on the full list of tracks and calorimeter clusters in the event. For validation, we determine the physics performance directly in the CMS software framework when the proposed algorithm is interfaced with the offline reconstruction of jets and missing transverse energy. We also report the computational performance of the algorithm, which scales approximately linearly in runtime and memory usage with the input size.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meson mass and width: Deep learning approach;Physical Review D;2024-09-11

2. Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service;Computing and Software for Big Science;2024-09-04

3. Finetuning foundation models for joint analysis optimization in High Energy Physics;Machine Learning: Science and Technology;2024-06-01

4. Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors;Communications Physics;2024-04-10

5. Factorised Neural Relational Inference for Particle Decay Reconstruction;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3