Dynamics of structural - inhomogeneous coaxial-multi-layered systems "cylinder-shells"

Author:

Mirsaidov M M,Safarov I I,Teshaev M Kh,Boltayev Z I

Abstract

Abstract A mathematical model and a technique for assessing the efficiency of the dissipative ability of structurally inhomogeneous mechanical systems consisting of multilayer cylinders bonded to a thin viscoelastic shell of finite length have been developed. A detailed analysis of the known works devoted to this problem is given. A model, methodology, and algorithm for studying the natural and forced oscillations of a system to assess the damping ability of structurally inhomogeneous elastic and viscoelastic mechanical systems, taking into account the influence of the geometric and physico-mechanical parameters of the shell and cylinderhave been developed. In solving the problems considered, the method of divided variables, the method of the theory of potential functions, the Mueller method, the Gauss method and the orthogonal sweep method were used. The complex eigenfrequencies, amplitudes of forced oscillations are determined, and the largest dephasing abilities of the considered structurally inhomogeneous systems are estimated. It has been revealed that, the effect of the greatest damping ability in structurally heterogeneous systems is manifested when the real parts of complex natural frequencies come closer due to the interaction of close natural forms with each other.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference44 articles.

1. Experimental study on instrumented micropiles;Capatti,2016

2. The free vibration of rectangular plates;Leissa,1973

3. Assessment of the Uncertainty in Human Exposure to Vibration;Adamo;IEEE Sens J,2014

4. Free vibration of rectangular isotropic plates with and without a concentrated mass;Boay,1993

5. Passive-damping design for vibration control of large structures;Palacios-Quinonero,2013

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3